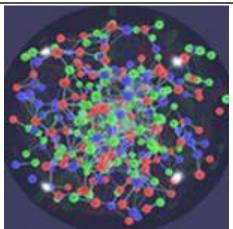
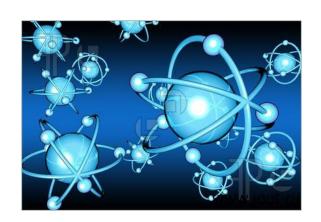

Лекция 5


Структурные уровни и системная организация материи на микро- и макроуровнях. Космология

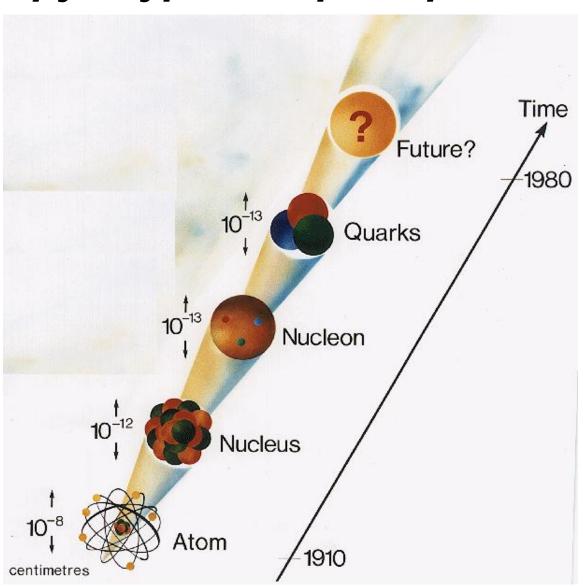
Уровни материи на основе соизмеримости с человеком:

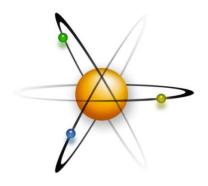
Макромир	Микромир	Мегамир	
соизмерный	несоизмеримые с		
с человеком	человеком		



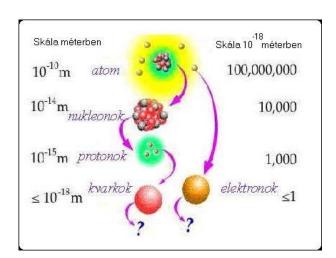
Микромир

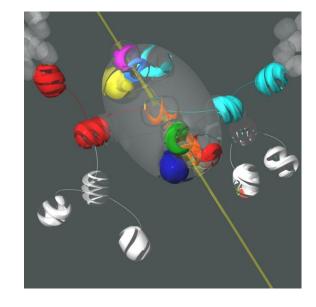
область предельно малых, непосредственно ненаблюдаемых материальных микрообъектов, пространственные размеры которых исчисляется от 10⁻⁸ до 10⁻¹⁶ см, а время жизни – от бесконечности до 10⁻²⁴с.


Фундаментальные наименьшие постоянные:


- Длина Планка 10⁻³³см;
- Планковское время 10⁻⁴⁴с.

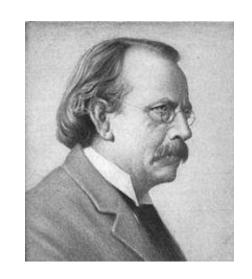
Основные структуры микромира:

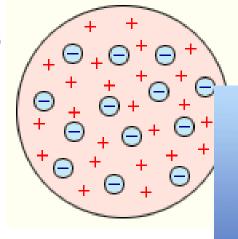

- элементарные частицы,
- атомные ядра,
- атомы,
- молекулы,
- поля.

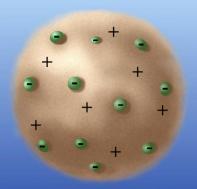


Элементарные частицы

– первичные, далеенеделимые микрочастицы,из которых состоит всяматерия.

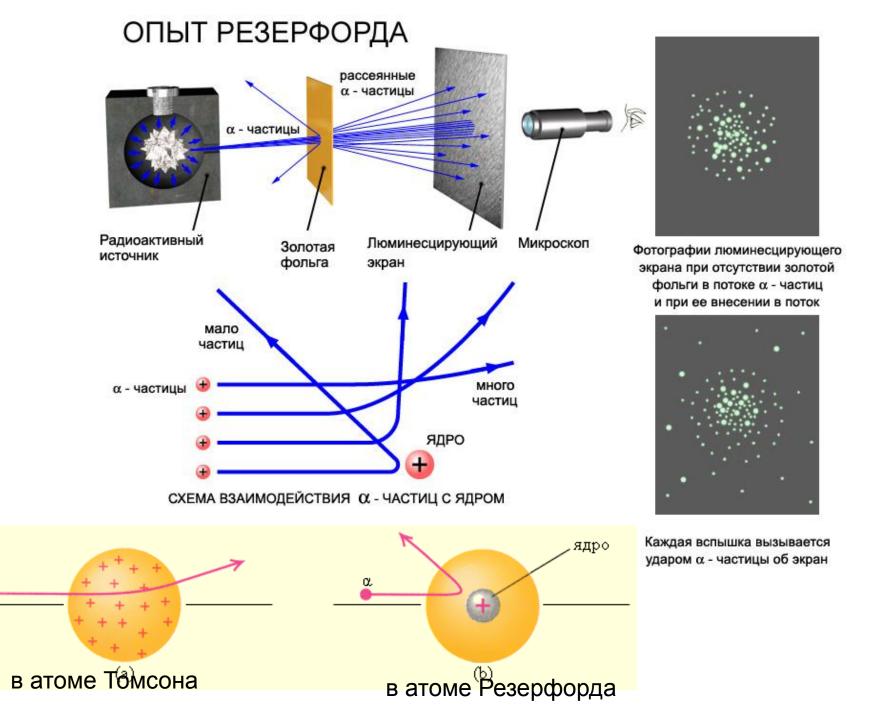

Группа		Название	Символ		Масса (в	Электрический	Спин	Время
		частицы	Частица	Античастица	электронных массах)	заряд	Спин	жизни (с)
Фотоны		Фотон	γ		0	0	1	Стабилен
Лептоны		Нейтрино электронное	Ve	∾ _e	0	0	1/2	Стабильно
		Нейтрино мюонное	Vμ	$\widetilde{\nu}_{\mu}$	0	0	1/2	Стабильно
		Электрон	e ⁻	e ⁺	1	-1 1	1/2	Стабилен
		Мю-мезон	μ-	μ+	206,8	-1 1	1/2	2,2.10-6
		Пи-мезоны		π^0	264,1	0	0	0,87·10 ⁻¹⁶
	Мезоны	пи-мезоны	π+	π_	273,1	1 -1	0	2,6·10 ⁻⁸
		К-мезоны	K +	K-	966,4	1 -1	0	1,24·10 ⁻⁸
			K 0	\widetilde{K}^{0}	974,1	0	0	≈ 10 ⁻¹⁰ -10 ⁻⁸
		Эта-нуль-мезон	1		1074	0	0	≈ 10 ⁻¹⁸
	Барионы	Протон	p	~ P	1836,1	1 –1	1/2	Стабилен
		Нейтрон	n	\ n	1838,6	0	1/2	898
Адроны		Лямбда- гиперон	V_0	${\stackrel{\sim}{\Lambda}}{}^0$	2183,1	0	1/2	2,63·10 ⁻¹⁰
		Curma- гипероны Σ + Σ 0 Σ -	Σ +	$\widetilde{\Sigma}^+$	2327,6	1 -1	1/2	0,8·10 ⁻¹⁰
			Σ^{0}	$\widetilde{\Sigma}^0$	2333,6	0	1/2	7,4·10 ⁻²⁰
			Σ-	$\widetilde{\Sigma}^-$	2343,1	-1 1	1/2	1,48·10 ⁻¹⁰
		Кси-гипероны	Ξ 0	Ξ°	2572,8	0	1/2	2,9·10 ⁻¹⁰
			Ξ-	E1 }	2585,6	-1 1	1/2	1,64·10 ⁻¹⁰
		Омега-минус- гиперон	G	~Ω	3273	-1 1	1/2	0,82·10 ⁻¹¹


Первая элементарная частица – **электрон** (Томсон, 1897).


Первая модель строения атома (Томсон, 1895г.) «Пудинг с изюмом»:

атом — это шар («пудинг»), по всему объему которого равномерно распределен положительный заряд, в который встроены («изюм») отрицательные электроны.

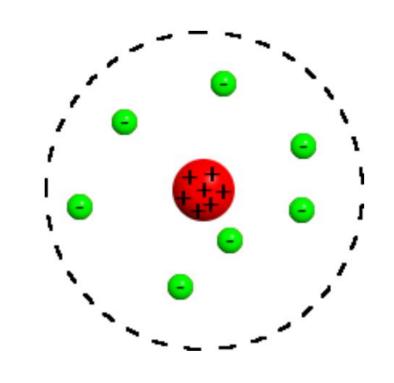
Сэр Джозеф Джон Томсон (1856 — 1940) английский физик


- **Радиоактивность** (Беккерель, 1896) самопроизвольное излучение атомов;
- т.е. превращение неустойчивых изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием некоторых частиц.
- Опыта Резерфорда по рассеянию α-частиц (1911 г).

Антуан Анри Беккерель (1852—1908) французский физик

Эрнест Резерфорд (1871 –1937) «отец» ядерной физики

Вывод


- радиоактивность связана с превращением одних химических элементов в другие естественным путем.
- Процесс превращения сопровождается альфа-излучением.
- В атоме сосредоточена огромная энергия.
- Радиоактивность не зависит от окружающей среды,
- процесс проходит без потери массы.

В магнитном поле поток радиоактивного излучения распадается на 3 составляющих:

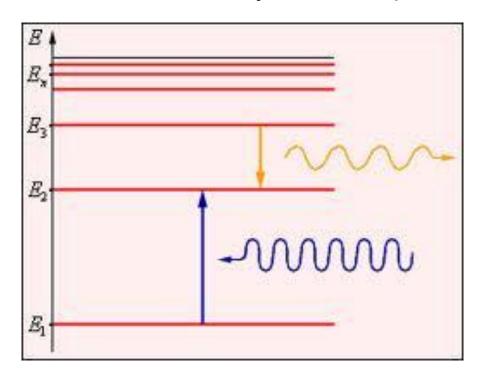
- альфа-лучи, отклоняющиеся влево. Это частицы (ядра гелия) представляющие полностью ионизированный атом химического элемента;
- <u>бета-лучи</u>, отклоняющиеся вправо они характерны для слабого взаимодействия (*напр., связали с испусканием электронов*);
- <u>гамма-лучи,</u> не отклоняющиеся представляют собой фотоны и обладают большой проникающей способностью.

При бомбардировке атомов альфа-частицами Резерфорд обнаружил (в 1919г.) вторую элементарную частицу — **протон**.

Ядерная модель атома (1911г.): в центре атома находится положительное ядро, в котором сосредоточена вся масса, а вокруг него вращаются электроны.

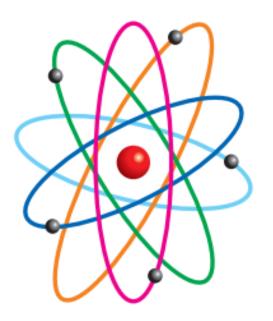
Постулаты Бора

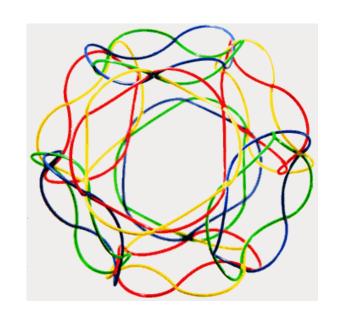
•постулат стационарных состояний: в атоме существуют стационарные состояния, в которых он не излучает энергии.

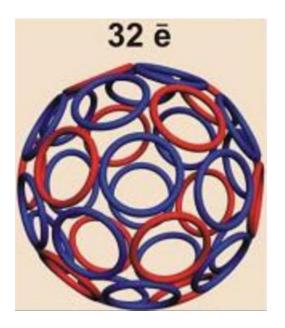

Стационарным состояниям атома соответствуют стационарные орбиты, по которым движутся электроны.

Такое движение не сопровождается излучением электромагнитных волн

Нильс Бор (1885-1962) Датский физик-теоретик


• правило частоты: при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией равной разности энергий, соответствующих стационарным состояниям атома до и после излучения (поглощения).


Первая квантовая теория атома


Бора: электроны движутся вокруг массивного положительно заряженного ядра, по своим орбитам, как планеты вокруг Солнца.

Эта модель соединяла модель Резерфорда и принципы Бора и названа **«планетарно-ядерная» модель Резерфорда-Бора**.

- **Волновая модель атома** (1923г., Л.Де Бройль).
- **Квантово-механическая модель** (1896г., Э.Шредингер).
- Орбитальная →
 Кольцегранная →
 Волногринная модели.

В 1932 г. Д.Чедвиг в составе космического излучения открывает третью элементарную частицу — нейтрон.

Сэр Джеймс Чедвик (1891 –1974) английский физик



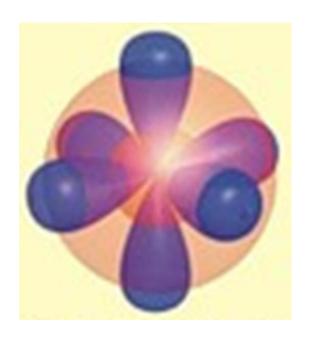
Дмитрий Иваненко (1904-1994) советский физик

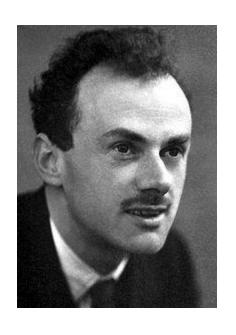
1932г. Д.Иваненко - **«Протонно-нейтронная модель ядра»**, которую затем развил В.Гейзенберг.

Модель ядра

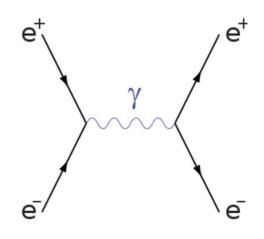
1932 г Иваненко и Гейзенберг предложили <u>протонно-нейтронную модель</u> атомного ядра

МАССА ПРОТОНА ИЛИ НЕЙТРОНА В 1840 РАЗ БОЛЬШЕ МАССЫ ЭЛЕКТРОНА


ПОЭТОМУ ПРАКТИЧЕСКИ ВСЯ МАССА АТОМА СОСРЕДОТОЧЕНА В ЕГО ЯДРЕ


ШАР, СОСТОЯЩИЙ ИЗ ЯДЕРНОГО ВЕЩЕСТВА, ДИАМЕТРОМ 0,5 км РАВЕН ПО ВЕСУ ЗЕМНОМУ ШАРУ

- В 1936г. Н.Бор и Я. Френкель «капельную модель ядра».
- В 1950-е гг. Мария Гепперт-Майер и Ханс Йенсен «оболочечную модель ядра».
- Оге Бор (в начале 1950-х годов) «обобщенную модель ядра».


В 30х гг ХХв. открыта первая античастица, — позитрон, существование которой предсказал Дирак: по массе она равна электрону, но имеет положительный заряд.

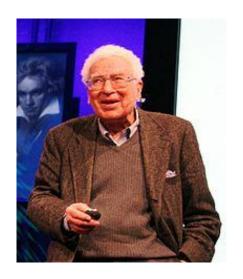
Поль Адриен Морис Дира́к (1902—1984) английский физик-теоретик.

Теории Дирака

- столкновение частицы и античастицы приводит к аннигиляции, исчезновению этой пары частица-античастица.
- Обратный процесс, при котором в результате взаимодействия электромагнитных или других полей одновременно возникают частица и античастица называется рождение пары.

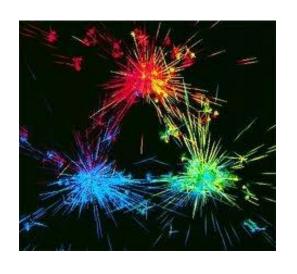
$$e^{-} + e^{+} = 2\gamma$$

Элементарные частицы


(истинно элементарные) — частицы, по современным представлениям, не имеющие внутренней структуры и конечных размеров.

- Кварки
- Лептоны
- Калибровочные бозоны

Составные частицы -

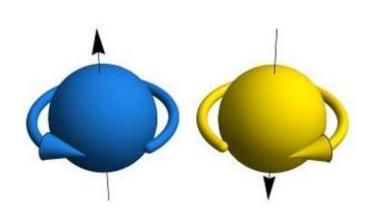

частицы, имеющие сложную внутреннюю структуру, но по современным представлениям, разделить их на части невозможно.

- **Адроны** (протон, нейтрон и др.)

Мюррей Гелл-Манн (р. 1929) американский физик

Теория кварков (в середине 60-х гг. ХХв)

Джордж Цвейг (р. 1937г) американский физик и нейробиолог


• <u>Кварки</u> — это фундаментальные материальные частицы, из которых состоят все адроны, участвующие в сильном взаимодействии.

 Классификация элементарных частиц по массе 			
с нулевой	легкие	тяжелые	
массой		Agence	
Фтом	Nesson	-acion, (a) have not sergical. Against John Sans and Entryped (quan, editions dp.	

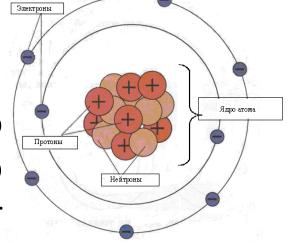
По электричес	скому заряду		
Отрицательный	Jacopse .		
Положительный			
Нулевой			

По времени жизни				
стабильные	нестабильные	Квазистабильные (резонансы)		
Personal Communication of the	an Chamanna			

▶ По спину			
Бозоны	Фермионы		
- с целым спином	-с полуцелым спином		

Частицы, переносчики взаимодействий

– калибровочные бозоны:

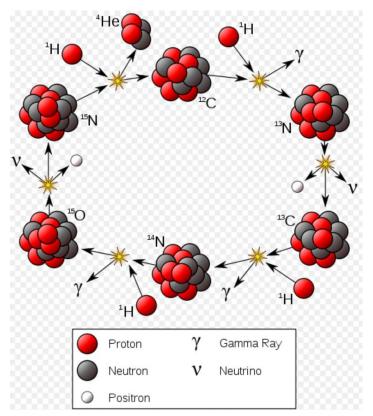

- фотоны переносчики электромагнитного взаимодействия;
- **глюоны** переносчик сильного взаимодействия,
- промежуточные векторные бозоны переносчик слабого взаимодействия,
- гравитон переносчик гравитационного поля (взаимодействия).

По типу физического взаимодействия

- Частицы, участвующие в электромагнитном, сильном и слабом взаимодействии – адроны.
- Частицы, участвующие в электромагнитном и слабом взаимодействии **лептоны**.

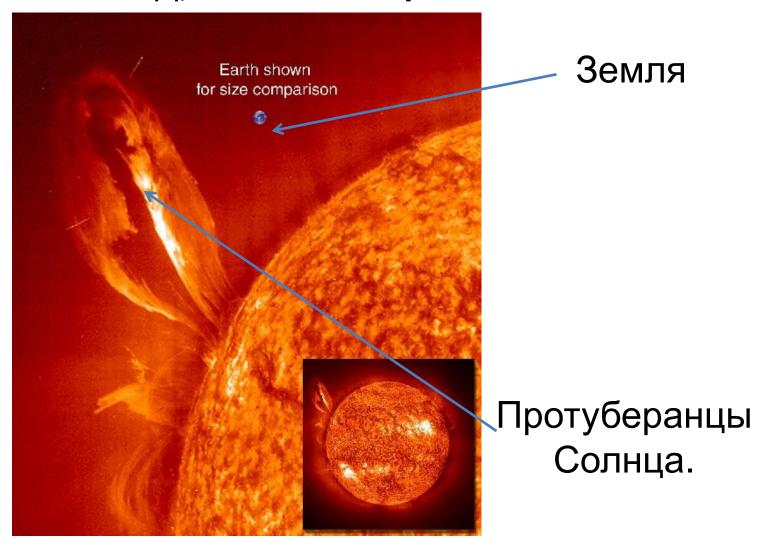
Современное строение атома (ядро и электронные оболочки)

В центре — положительно заряженное ядро атома, размер которого (10⁻¹²см) зависит от составляющих его нуклонов: протона и нейтрона.


Связи нуклонов в ядре - ядерные (сильные) короткодействующие силы притяжения.

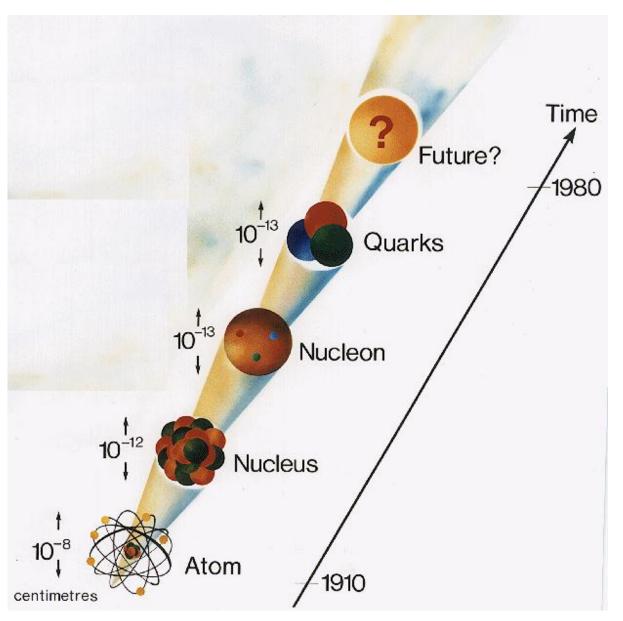
Энергия связи ядра - энергия, которую необходимо затратить, чтобы разделить его на отдельные нуклоны.

Дефект массы - масса ядра атома меньше масс составляющих его нуклонов,

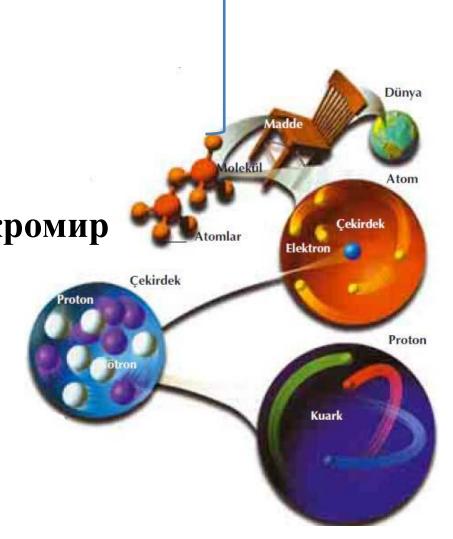

т.к. в процессе синтеза часть их массы превращается в энергию и выделяется в окружающую среду.

За счет этого возникает огромная <u>термоядерная</u> энергия.

Термоядерные процессы обеспечивают свет звезд, в т.ч. **Солнца**.



- Вокруг ядра вращается облако из отрицательно заряженных электронов, образующих электронные оболочки, размеры которых определяют размеры атома (≈10⁻⁸см).
- Число протонов в ядре совпадает с порядковым номером элемента в таблице Менделеева и равно числу электронов.


- Общее число протонов и нейтронов (нуклонов)
 - *наз. массовым числом.*
- Заряд атома определяется зарядом протонов.

Иерархия физических систем

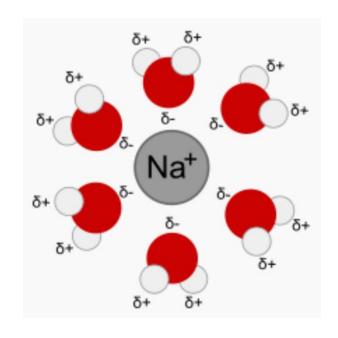
- \bullet фундаментальные частицы \rightarrow
- •составные элементарные частицы –
- •атомные ядра →
- \bullet атомы \rightarrow
- \bullet молекулы \rightarrow

• макроскопические макромир тела

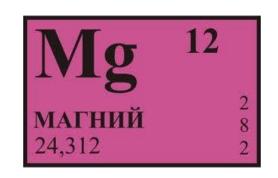
микромир

Химический уровень

атом →	молекула →	макротела →	вещество	
микромир		макромир		


Развитие химии:

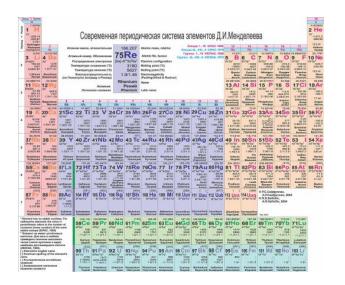
- •XVII в учение о составе вещества
- •XIX в структурная химия
- •ХХ в учение о химических процессах
- •середина ХХв эволюционная химия.


• **Атомы** могут присоединять или отдавать электроны, становясь отрицательно или положительно заряженными **ионами**.

- Положительно заряженные ионы катионы (Ca²⁺),
- отрицательно заряженные $\underline{\text{анионы}}$ (Cl⁻ , SO₄²⁻).

Ион натрия, окруженный в растворе молекулами воды

- Все атомы, имеющие одинаковый заряд ядра, и различаются по своей массе наз. *химическим элементом*.
- Первым систематизировать химические элементы попытался Лавуазье, который опроверг гипотезу о флогистоне.
- <u>Флогистон</u> «огненная субстанция», якобы наполняющая все горючие вещества и высвобождающаяся из них при горении.


Антуа́н Лора́н Лавуазье́ (1743—1794) французский ученый

В 1869г. Д.И. Менделеев создал Периодическую систему химических элементов.

В качестве системообразующего фактора он выбрал атомную массу.

Дмитрий Иванович Менделеев (1834-1907) Русский ученый-энциклопедист, химик, физик, ...

- Атомы с одним и тем же количеством протонов, но разным количеством нейтронов (следовательно с разной атомной массой) называют изотопами данного элемента (дейтерий, тритий и др.).
- Атомы образуют молекулы.
- Совокупность молекул представляет собой химическое вещество.

Качество и свойства вещества

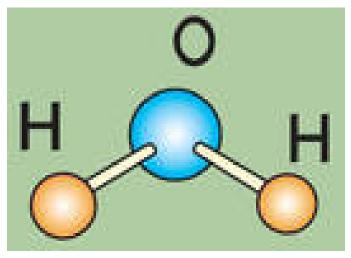
согласно Бойлю, зависят от того, из каких химических элементов оно состоит.

• В 1861г. А.М.Бутлеров создал теорию химического строения вещества:

свойства вещества определяются порядком связей атомов в молекулах и их взаимным влиянием.

Александр Михайлович Бутлеров (1828-1886) русский химик

- <u>Простые вещества</u> вещества, состоящие исключительно из атомов одного химического элемента.
- **Химические соединения** сложное вещество, состоящее из химически связанных атомов двух или нескольких элементов.
- ✓ *Качественный состав,* показывает, из атомов каких элементов состоит молекула вещества.
- ✓ *Количественный состав* показывает, какое число атомов каждого элемента образует молекулу вещества.


• Химические соединения обладают определенным, неизменным составом — закон постоянства состава.

Этот закон был обоснован Дальтоном.

Бертолле указывал на существование соединений переменного состава в форме растворов и сплавов. Подтверждено H.C.Курнаковым.

<u>Бертоллиды</u> – это те соединения, состав которых зависит от способа их получения.

- Структура химических соединений зависит от валентности элементов (Ф.Кекуле).
- Валентность, или число единиц его химического сродства, определяет, с каким числом атомов способен соединяться атом данного элемента.

Макромир

- мир материальных объектов, соизмеримых по своим масштабам с человеком и его физическими параметрами.
- Пространственные величины мм, см., м., км;
- время в сек., мин., часах, днях и годах.

Макромир представлен макротелами:

- ✓ макромолекулы,
- ✓ вещества в различных агрегатных состояниях,
- ✓ живые организмы,
- ✓ человек и продукты его деятельности.
- Центральное понятие макромира *вещество*.